Dlg1 controls planar spindle orientation in the neuroepithelium through direct interaction with LGN
نویسندگان
چکیده
Oriented cell divisions are necessary for the development of epithelial structures. Mitotic spindle orientation requires the precise localization of force generators at the cell cortex via the evolutionarily conserved LGN complex. However, polarity cues acting upstream of this complex in vivo in the vertebrate epithelia remain unknown. In this paper, we show that Dlg1 is localized at the basolateral cell cortex during mitosis and is necessary for planar spindle orientation in the chick neuroepithelium. Live imaging revealed that Dlg1 is required for directed spindle movements during metaphase. Mechanistically, we show that direct interaction between Dlg1 and LGN promotes cortical localization of the LGN complex. Furthermore, in human cells dividing on adhesive micropatterns, homogenously localized Dlg1 recruited LGN to the mitotic cortex and was also necessary for proper spindle orientation. We propose that Dlg1 acts primarily to recruit LGN to the cortex and that Dlg1 localization may additionally provide instructive cues for spindle orientation.
منابع مشابه
08-P016 Maintenance of the orientation of polarity in Drosophila larval brain neuroblasts
During development of the vertebrate CNS, a precise control of planar orientation of the mitotic spindle of dividing neuroepithelial progenitors regulates the equal partitioning of apical attachment sites. This is necessary to maintain sister cells within the neuroepithelial structure. We have previously demonstrated an essential role for the G-protein regulator LGN in this process. Here we use...
متن کامل08-P014 Control of mitotic spindle rotation and planar divisions in chick neuroepithelial cells
During development of the vertebrate CNS, a precise control of planar orientation of the mitotic spindle of dividing neuroepithelial progenitors regulates the equal partitioning of apical attachment sites. This is necessary to maintain sister cells within the neuroepithelial structure. We have previously demonstrated an essential role for the G-protein regulator LGN in this process. Here we use...
متن کامل08-P015 Human ASPM participates in cleavage furrow orientation and cytokinesis
During development of the vertebrate CNS, a precise control of planar orientation of the mitotic spindle of dividing neuroepithelial progenitors regulates the equal partitioning of apical attachment sites. This is necessary to maintain sister cells within the neuroepithelial structure. We have previously demonstrated an essential role for the G-protein regulator LGN in this process. Here we use...
متن کامل08-P017 Subcellular mRNA targeting in the Drosophila oocyte – RNA motifs for destination and transport efficiency
During development of the vertebrate CNS, a precise control of planar orientation of the mitotic spindle of dividing neuroepithelial progenitors regulates the equal partitioning of apical attachment sites. This is necessary to maintain sister cells within the neuroepithelial structure. We have previously demonstrated an essential role for the G-protein regulator LGN in this process. Here we use...
متن کاملA lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells
To maintain tissue architecture, epithelial cells divide in a planar fashion, perpendicular to their main polarity axis. As the centrosome resumes an apical localization in interphase, planar spindle orientation is reset at each cell cycle. We used three-dimensional live imaging of GFP-labeled centrosomes to investigate the dynamics of spindle orientation in chick neuroepithelial cells. The mit...
متن کامل